

Thermal Stress Analysis of columnar microstructures and intergranular crack formation

ontinuous Isting

Casting

Consortium

Aravind Murali

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

Final goal: Design casting practices to prevent transverse cracks

Relating Grain boundary side lengths with grain size measurements

Test experiment grain size is **460µm**

Equivalent Area Principle

Assume d=grain size

asting Consortium

a is side of hexagon-shaped grain is related to d:

$$a = \sqrt{\frac{d^2 \times \pi}{6\sqrt{3}}} = 0.2529mm$$

Arranging grains in a regular hexagon such that there are equal length of grains along the three grain boundaries and the triple point is located close to the center of the domain

ASTM Standard Other geometric Since 1 grain is present properties of a in an area of 0.1661mm² hexagonal grain: Grain number is 6.02 grains/mm² In-radius = $\frac{a \times \sqrt{3}}{2}$ =0.219mm From ASTM handbook, 1948 ed., grain number Circumradius = a=0.2529mm of 6 corresponds to a grain diameter of ~0.425mm (0.4378.0.3795) (0,0.3795) (ASTM Grain number between -1 and 0) (0.2189.0.1265) 04378,0.253) (0.0) (0.4378.0) All dimensions

in mm

Mechanical Properties (E & σ_v) for **Grain Matrix and Grain Boundary**

An elastic - plastic model for mechanical behavior is used. (The time scales are small (in minutes), creep neglected in the analysis)

Composite-Grain Matrix $\sigma_{\rm y}$ - $\epsilon_{\rm pl}$ calculation

Use equations of particle reinforced composites (See W. Callister, Mat. Sci and Engg (7th Edition), p585 [2]

$$\sigma_{upper} = \sigma_{aus}V_{aus} + \sigma_{fer}V_{fer}$$

$$\sigma_{lower} = \frac{\sigma_{aus} \times \sigma_{fer}}{V_{aus} \times \sigma_{ferrite} + V_{fer} \times \sigma_{aus}}$$

$$\sigma_{average} = \frac{\sigma_{lower} + \sigma_{upper}}{2}$$

$$\sigma_{aus} - \text{Strength of austenite phase,}$$

$$\sigma_{fer} - \text{Strength of ferrite phase}$$

$$V_{aus} - Volume fraction of austenite}$$

$$\sigma_{average} \text{ is used for stress-strain property of grain matrix in model}$$

University

GTN model for Grain Model: based on Porous Metal Plasticity

The Gurson-Tvergaard-Needleman^[6] model predicts ductile fracture due to void nucleation and growth. In ABAQUS it is implemented as Porous Metal Plasticity Modal^[7]

Yield condition given as	$\phi = \left(\frac{q}{\sigma_y}\right)^2 + 2q_1 f \cosh \theta$	$\ln\left(-\frac{3}{2}\frac{q_2p}{\sigma_y}\right) - (1+q_3f^2) = 0$
$\dot{f} = \dot{f}_{\rm gr} + \dot{f}_{\rm nucl}$ $\dot{f}_{\rm gr} = 0$	$(1-f)\dot{\boldsymbol{\varepsilon}}^{pl}:\mathbf{I}\dot{f}_{\mathrm{nucl}}=A$	$\mathbf{A} \stackrel{i}{\bar{\varepsilon}} \stackrel{pl}{m} A = \frac{f_N}{s_N \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\bar{\varepsilon}_m^{pl} - \varepsilon_N}{s_N}\right)^2\right]$

- Total rate of change of Void fraction (\dot{f})
- Rate of change of Void fraction due to void growth (\dot{f}_a)
- Rate of change of Void fraction due to void nucleation (\dot{f}_n)
- deviatoric stress (q) •
- hydrostatic pressure (p)

At Grain Matrix

Parameter	Value [9][7]
q1	1.5
q2	1.0
q3	2.25
Initial void fraction, f _o	0.005
Void nucleation Distribution	$\epsilon_{N}0.3/S_{N}0.1$
Volume fraction of nucleated voids, f _N	0.004

At Grain Boundary

	-
Parameter	Value[8][7]
q1	1.5
q2	1.0
q3	2.25
Initial void fraction, f ₀	0.005
Void nucleation Distribution	$\epsilon_{N} 0.3/S_{N} 0.1$
Volume fraction of nucleated voids, f _N	0.04

11

University of Illinois at Urbana-Champaign

Grain model: Unit Cell Domain Mesh Details

uous

ortium

Mesh created in ABAQUS 6.13-2

Number of nodes: 57078 Number of elements: 28332 Element types: CPEG6H

Typical wall clock time of around 7000seconds on 3 Intel Xeon processors (1.8Ghz)

Case 2 - Effect of Temperature

nuous asting Insortium

Metals Processing Simulation Lab

Summary and future work

Summary -

- A micro-structure based methodology is developed to analyze hot ductility of steels using a macro-micro model approach
- Model roughly matches ductility measurements in lab tensile test
- Ferrite networks cause large drop in ductility (as observed) explaining the lower ductility in 2-phase temperature region
- Effect of temperature on ductility matches observations. Decreasing temperature (from 870°C to 800°C) increases ductility from 6.6% to 31%

Future Work -

- Void fractions due to precipitates can be studied in combination with other models
- Application to a real world caster with different loading and boundary conditions
- Effect of different grain sizes and ferrite film thicknesses can be investigated

Acknowledgments

- Continuous Casting Consortium Members (ABB, ArcelorMittal, Baosteel, Magnesita Refractories, Nippon Steel and Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, Severstal, SSAB, Tata Steel, ANSYS/ Fluent)
- Dr. Koric, Dr. Lance, Prof. Thomas and other members of my research group

Casting Consortium

References

Metals Processing Simulation Lab

23

24

Aravind Murali

[1] B.G.Thomas, J.K.Brimacombe, and I.V.Samarasekara,"The Formation of Panel cracks in Steel Ingots: A-State-of-the-Art Review", ISS Transactions, 1986, Vol.7, Pg. 7-20

[2] William D. Callister, Jr., "Material Science and Engineering – An Introduction, Seventh Edition", John Wiley and Sons, Inc., 2007

[3] G.I.S.L Cardoso, B. Mintz, and S. Yue, 'Hot ductility of aluminum and titanium containing steels with and without cyclic loading temperature oscillations', Ironmaking and Steelmaking, 1995, Vol.22,No.5,Pg365-377

[4] G.I.S.L.Cardoso,' The influence of microstructure on the hot ductility of four low carbon steels with respect to transverse crack formation in continuously cast slabs', Masters thesis, McGill University, 1990

[5] BG Thomas, Phd. Thesis, University of British Columbia, 1985.

[6] Wikipedia (www.wikipedia.org)

University of Illinois at Urbana-Champaign

[6] Needleman A, Tvergaard V. "An analysis of ductile rupture modes at a crack tip". J Mech. and Phys. of Solids 1987;35:151-83

[7] ABAQUS User Manuals- Porous Metal Plasticity

[8] J. M. Alegre, J.Perez, F.Gutierrez-Solana, L.Sanchez, "The application of Gurson-Tvergaard Needleman model in the age embritlement of austeno-ferritic stainless steels", ECF 13, San Sebastian, 2000.

[9] Iron-Carbon phase diagram from - www.calphad.com/iron-carbon.html

[10] H. G. Suzuki, S. Nishimura, J. Imamura and Y. Nakamura, Trans. Iron Steel Inst. Jpn., 24, (1984), p.169

[11] Li, Chunsheng and Thomas, BG, "Thermo mechanical Finite-Element Model of Shell Behavior in Continuous Casting of Steel", Metallurgical and Materials Transactions B, Vol.35B, December 2004 – pg.1151-1172

[12] Kozlowski, Patrick and Thomas BG, "Simple Constitutive Equations for Steel at High Temperature ", Metallurgical Transactions A,Vol.23A, March 1992, Pg.903- 918

[13] Wray, P.J. "High Temperature Plastic-Flow Behavior of Mixtures of Austenite, Cementite, Ferrite, and Pearlite in Plain-Carbon Steels" Metallurgical Transactions A, Vol. 15A, November 1984, Pg. 2041-2058

Appendix 3 – Difference between volume and % weight at 800C for alpha ferrite and austenite[*]

$$\rho_{\alpha}(\frac{kg}{m^{3}}) = 7881 - 0.324 \times T(^{\circ}\text{C}) - 3 \times 10^{-5} \times T^{2}(^{\circ}\text{C})$$
$$\rho_{\gamma}(\frac{kg}{m^{3}}) = \frac{100 \times (8106 - 0.51 \times T(^{\circ}\text{C}))}{(100 - (pct \ C)) \times (1 + 0.008 \times (pct \ C))^{3}}$$

Since the temperature is known (from experiment), we use 800°C

$$\rho_{\alpha}\left(\frac{kg}{m^{3}}\right) = 7881 - 0.324 \times 800 - 3 \times 10^{-5} \times 800^{2} = 7602.6 \left(\frac{kg}{m^{3}}\right)$$
$$\rho_{\gamma}\left(\frac{kg}{m^{3}}\right) = \frac{100 \times (8106 - 0.51 \times 800)}{\left(100 - (0.079)\right) \times \left(1 + 0.008 \times (0.079)\right)^{3}} = 7689.58 \left(\frac{kg}{m^{3}}\right)$$

For a ferrite volume fraction of 82%, the corresponding wt. fraction of ferrite corresponds to-

 $\% wt_{\alpha} = \frac{0.82 \times 7602.6}{0.18 \times 7689.58 + 0.82 \times 7602.6} = 81.8\%$

Since a the %wt fraction of ferrite is almost the same as volume fraction, we can take volume fraction of ferrite and avoid this calculation

 [*] - Li, Chunsheng and Thomas, BG, "Thermomechanical Finite-Element Model of Shell Behavior in Continuous Casting of Steel", Metallurgical and Materials Transactions B, Vol.35B, December 2004 – pg.1151-1172
 University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Aravind Murali • 27

Carbon Content – 0.005% and strain rate $1x10^{-3}s^{-1}$

- 920C is above the temperature for start of austenite to ferrite transformation – 912C
- At this temperature, the microstructure should consist of Austenite only
- Hence this data from experiments by P.Wray (for a similar %C) are compared with the Kozlowksi model at this temperature to verify the validity of using these properties
- P.Wray's extrapolated data matches well with the Kozlowski model for Austenite at this temperature

[*] Wray, P.J. "Effect of Carbon Content on the Plastic Flow of Plain Carbon Steels at Elevated Temperatures." Metallurgical Transactions A, Vol. 13A, January 1982,Pg.125-134

